A retail company wants to use Amazon QuickSight to generate dashboards for web and in-store sales. A group of 50 business intelligence professionals will develop and use the dashboards. Once ready, the dashboards will be shared with a group of 1,000 users.
The sales data comes from different stores and is uploaded to Amazon S3 every 24 hours. The data is partitioned by year and month, and is stored in Apache Parquet format. The company is using the AWS Glue Data Catalog as its main data catalog and Amazon Athena for querying. The total size of the uncompressed data that the dashboards query from at any point is 200 GB.
Which configuration will provide the MOST cost-effective solution that meets these requirements?
A company is migrating from an on-premises Apache Hadoop cluster to an Amazon EMR cluster. The cluster runs only during business hours. Due to a company requirement to avoid intraday cluster failures, the EMR cluster must be highly available. When the cluster is terminated at the end of each business day, the data must persist.
Which configurations would enable the EMR cluster to meet these requirements? (Choose three.)
A company is building a service to monitor fleets of vehicles. The company collects IoT data from a device in each vehicle and loads the data into Amazon Redshift in near-real time. Fleet owners upload .csv files containing vehicle reference data into Amazon S3 at different times throughout the day. A nightly process loads the vehicle reference data from Amazon S3 into Amazon Redshift. The company joins the IoT data from the device and the vehicle reference data to power reporting and dashboards. Fleet owners are frustrated by waiting a day for the dashboards to update.
Which solution would provide the SHORTEST delay between uploading reference data to Amazon S3 and the change showing up in the owners' dashboards?
A company has an application that uses the Amazon Kinesis Client Library (KCL) to read records from a Kinesis data stream.
After a successful marketing campaign, the application experienced a significant increase in usage. As a result, a data analyst had to split some shards in the data stream. When the shards were split, the application started throwing an ExpiredIteratorExceptions error sporadically.
What should the data analyst do to resolve this?
A manufacturing company uses Amazon S3 to store its dat
a. The company wants to use AWS Lake Formation to provide granular-level security on those data assets. The data is in Apache Parquet format. The company has set a deadline for a consultant to build a data lake.
How should the consultant create the MOST cost-effective solution that meets these requirements?